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Abstract

Dynamic stresses around a crack in a nonhomogeneous interfacial layer between two dissimilar elastic half-planes
are obtained. The material constants vary continuously in the layer. An incoming shock stress wave impinges on the
crack at right angles to the crack faces. In order to solve the problem, the interfacial layer is divided into several
homogeneous layers that have different material properties. The boundary conditions are reduced to dual integral
equations using the Fourier—Laplace transform technique. The equations are solved by expanding the differences of the
crack faces in a series in the Laplace transform domain. The unknown coeflicients in the series are determined using the
Schmidt method. The stress intensity factors in the transform domain are inverted numerically in physical space. Using
these numerical results, the stress intensity factors for a very thin layer can be estimated. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

If a diffusion method is used to join a ceramic and a metal, a thin diffusion layer appears between the
ceramic and the metal. If an aluminum plate is adhered to a plastic plate through laser beam welding, a thin
layer appears, which locks the two materials mechanically. The interfacial zones which join these two
materials are relatively weak and are inclined to fracture.

The two-dimensional problem for a cracked interfacial layer between two dissimilar elastic half-planes
has been solved by Delale and Erdogan (1988). They assumed that the elastic constants vary continuously
across the interfacial layer within the range from the elastic constants of the upper half-plane to those of the
lower half-plane and obtained the stress and displacement fields for internal pressure on the crack surfaces.
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The corresponding axisymmetric problem for a cylindrical crack in an interfacial zone between a circular
elastic cylinder and an infinite elastic medium for Mode I loading is solved by Itou and Shima (1999).

If composite materials joined by a cracked nonhomogeneous layer are loaded suddenly, it is necessary to
clarify the transient dynamic stress intensity factors. Babaei and Lukasiewicz (1998) solved the transient
dynamic problem for a crack in a nonhomogeneous layer between two dissimilar elastic half-planes. The
crack surfaces are loaded suddenly by anti-plane shear traction, and the dynamic stress intensity factor for
Mode III loading is obtained.

In the present paper, dynamic stresses are solved for a crack in a nonhomogeneous interfacial layer
between two dissimilar elastic half-planes. On the surfaces of the crack, internal pressure is applied sud-
denly and the stress intensity factors are obtained for Mode I loading. The material constants in the layer
are assumed to vary continuously. In order to circumvent the difficulty associated with the cracked non-
homogeneous layer, the interfacial layer is divided into several homogeneous sub-layers that have different
material properties. By letting the number of sub-layers, m, approach infinity, the stresses and displace-
ments can be obtained for the nonhomogeneous layer.

Using the Fourier and Laplace transforms, the boundary conditions are reduced to dual integral
equations in the Laplace transform domain. In order to solve these equations, the differences of the crack
surface displacements are expanded in a series of functions, which are equal to zero outside the crack. In
order to satisfy the boundary condition inside the crack, the unknown coefficients in the series are deter-
mined using the Schmidt method (Yau, 1967). The stress intensity factors defined in the Laplace transform
domain are inverted in physical space using the numerical technique of Miller and Guy (1966). The stress
intensity factors are computed numerically for several thicknesses of the layer.

2. Fundamental equations

A cracked nonhomogeneous elastic layer (4) is denoted by —Hjp < y < Hc with reference to the rectan-
gular coordinate system (x, y) shown in Fig. 1. A crack is located along the x-axis from —a to a at y = 0. An
upper half-plane (C) and a lower half-plane (B) are denoted by Hr <y and y < — Hjp, respectively. The
shear modulus, Poisson’s ratio and the density of the layer (A4) are represented by u,, v4 and p,, respec-
tively. Those of the lower half-plane (B) and upper half-plane (C) are represented using the subscripts B and
C, respectively. Layer (4) is further divided into layer (4-1) and (A4-2). Elastic constants (g, v4, p,) most
likely vary continuously with respect to y in the interfacial layer, as shown in Fig. 2.

If the displacement components u and v are expressed by two functions ¢(x,y,¢) and ¢(x,y,t) such that

u=20¢/0x —0p/dy,  v=>0¢p/dx+0p/dy, (1)
the equations of motion reduce to the following forms:
P/t + P/ = 1/c} x D>/, D/’ + @)Dyt = 1/ch x /L, (2)

where 7 is time and the dilatational wave velocity ¢; and the shear wave velocity ¢y can be given under the
plane state of strain as follows:

=20 —u/l(l-2)0), & =u/p. 3)
The stresses can be expressed by the equations

T, = —2ud°p/ox* + pd*¢p/dr* + 2ud’p /dxDy,

T = =200’ /0y + p0p /0 — 200% ¢ /AxDy, (4)

Ty = 200°p/x0y + u(@*p/0x* — B /0y?).



S. Itou | International Journal of Solids and Structures 38 (2001) 3631-3645 3633

Ay
©)
I
l Y “-2
mll = " () T
T _
Y (4-1)
(B)

Fig. 1. Geometry and coordinate system.
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Fig. 2. Shear modulus, Poisson’s ratio and density as a function of y.

The incident stress wave that propagates along the y-axis in the negative direction through the upper
half-plane (C) can be expressed as

Tye = PH(y + cict), (5)
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where p is a constant, H(¢) is the Heaviside unit step function and the subscript C indicates variables for the
upper half-plane (C). If the incident stress wave impinges on the nonhomogeneous interfacial layer, the
wave is reflected and refracted in the layer (4) in a complicated manner. However, a stress wave similar to
that represented by Eq. (5) very likely passes through the nonhomogeneous layer, varying the wave velocity
c; in the layer. Therefore, the boundary conditions for the problem presently being considered can be
expressed as follows:

Typar = —pH (1),  Tyur =0 aty =0, |x|<a, (6)
up =g, Uvp=uvn aty=0, a<|x], (7)
T2 = Tpdls  Tpd2 = Tupdl aty =0, [x]< oo, (8)
Tpe = Ty, Ty = Tou2,  Uc = Ug, U =1Ugp  aty=He, |x|<oo, 9)
Tydl = Ty,  Toul = Ty,  Ugl = Up, Uq = Up aty = —Hp, |x|<oo, (10)

where subscripts 41, A2, B and C indicate variables for layers (4-1) and (4-2) and half-planes (B) and (C),
respectively.

3. Division of interfacial layer into sub-layers

The nonhomogeneous interfacial layer (A) is divided into several homogeneous sub-layers that have
different material properties. The number of the sub-layers, m, should be odd rather than even. In order to
illustrate the process by which the problem is solved, m is set to three. If m = 3, the layer (A) is divided into
four layers because the sub-layer that contains a crack is divided into two separate layers. More precisely,
the interfacial layer (A4) is divided into sub-layer (1) (0 <y < H,), sub-layer (2) (—H, <y <0), sub-layer (3)
(H; <y < H3) and sub-layer (4) (—H; <y < — H>), as shown in Fig. 3, where k;, h,, h; and h4 are the re-
spective thicknesses of the layers. The upper half-plane (C) and the lower half-plane (B) are numbered by
(5) and (6), respectively. For m = 3, the shear moduli g, (i = 1,2,3,4) for the four homogeneous layers are
as shown in Fig. 4 and are given by the following equations:

fy =y aty = —Hy+hy/2,
o =u, aty=—Hy+ (ha+mh)/2,

= Mo,
Py =iy aty=H +hs/2.

(11)

Poisson’s ratios v; and densities p; (i = 1,2, 3,4) have relationships that are quite similar to those expressed
in Eq. (11).
Boundary conditions (6)-(10) can be expressed by the following equations:

Ty = —pH(t), 151 =0 aty =0, |x|<a, (12)
Uy =1uy, U3 =10 aty =0, a<|x|, (13)
Tyl = Ty2, Tyl = Txy2 at y= 07 |x‘ < 0, (14)

T3 = Tyyly, T3 = Tyyl, U3 = UL, U3 =1 aty =H,, |[x[<oo, (15)



where the subscript 7 indicates the layers i (i = 1,2,3,4) and half-planes i (i
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Fig. 3. Interfacial layer replaced by three sub-layers.
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Fig. 4. Shear moduli in the sub-layers used to represent the interfacial layer.

Txys = Tyy3, Us = Uz, Us =03 aty:H37 |X|<OO,
T2 = Tapsy Uy = Usy, U3 = U4 aty = —H,, [x|<oo,
Txpd = Txye, U4 = Ug, V4 = Ug aty = 7H47 |x| < 00,

= 5,6).
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4. Analysis

To find the solution, we introduce the Laplace transforms

6= [ sew(-sd g0 =1/@m) x [ ¢ oexpnds (19)
and the Fourier transforms

70 = [ rmexpieds, 16 =1/@m) x [ f@ew(-it)de (20)
Applying Egs. (19) and (20) to Eq. (2), we obtain

(@)dr = &= 2/3)F =0, (/d — & — &) =0, e1)
where

& =201-v)/1-2v) (i=12,...,6). (22)

The solutions of Eq. (21) are in the following forms for layers (i) (i =1,2,3,4)

¢; = Aysinh (p,,y) + 4zicosh(yy), @ = By;sinh(y,,y) + Bacosh (), (23)

and for half-planes (5) and (6), the solutions are expressed as

¢; = Csexp(—yi5y), @ = Dsexp(—7s), (24)

éz = Cﬁexp(yléy)a @z = DGeXp(VZGy)a (25)
respectively, where

ne=1E+ (/e g =E+ e s/e)]? ((=1,2,...,6) (26)
and 4y1,451,B11,...,Ds are the unknown coefficients.

Substituting Egs. (23)-(25) into the Fourier—Laplace transformed expressions of Egs. (1) and (4), we
obtain for layers (i) (i =1,2,3,4)

u; = idy[—¢sinh (pyy)] + idy[—Ecosh ()] + Bii[—yy cosh (9y)] + Ba[—7pysinh (p,,)],

27
B = Aulpscosh ()] + Anlyyssinh ()] + Bul—E sin (73)] + Bal—Ecosh (1), @7)
T/ Quy) = Ad[E + 8257/ (2] sinh (1)}
{2 + 257/ (26| cosh (1)}
+ iB1;i[— &y cosh (75,9)] + iBoi[—Eyy;sinh (7,,)], (28)

f;yi/(zﬂi) = idy[—Cyy;c08h (yp)] + ida[—Eyy;cosh (7,,9)]
+ By[—(& +73)/2 x sinh (yyy)]
+ By[—(& +3,)/2 x cosh (7,9)].
For half-planes (5) and (6), the Fourier-Laplace transformed expressions of displacements and stresses are
of the form:
us = iCs[—Cexp (=759)] + Ds[as exp (=725)],

29
U5 = Cs[—715exp (=715¥)] + iDs[—Cexp (—72sp)], ()
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fWs/(zlus) = CS{[fz + 3252/(2025)] exp (—75¥) } + iDs[Eprsexp (—7as)],

30
fxys/(z.us) = iCs[&y sexp (—yisy)] + DS[_(fz + “/%5)/2 x exp (—72s))], (0
= iCs[—Cexp (y16¥)] + Do[—726€XP (7261)] (31)

s = Co[r16exp (=716¥)] + iDs[—Eexp (—7260)],
Th6/ (216) = Co{[E + €65/ (236)] exp (7169) } + iDe[—Epa exp (7269)]; 52)

f;y6/(2lu6) = iCe[—&y1exp (7161)] +D6[*(52 + “/%6)/2 X exp (—726)]-

The boundary conditions (14)—(18), which are valid for |x| < oo, give 18 equations with respect to 20
unknown coefficients. Then, 18 unknown coefficients iB]], i321, A12, Azz, iBlz, iBzz, A13, A23, iB]3, iBzz, A14,
Ans, iB1a, iBy, Cs, iDs, Cg and iDg can be represented by two unknown coefficients 4; and 4,;. Namely, all
the stresses and displacements can be shown by only two coefficients 4|; and 4,,. For example, stresses in
layer (1) at y = 0 can be expressed by the equations

f*ol = A]]k(l)(f) +A21k£1)<5)7
x}l = idnks? (&) + idaky" (&),

where the expressions of known functions kil)(.f), kgn(é), kgl)(é) and kf‘”(é) are omitted, and variables

having superscript 0 are at y 0.

Displacements #;°, 7:°, #;* and 73" are of the form:

(33)

w0 = idy kD (&) + idy k) (8),

(34)
5 = Anks () + Anks (©),
”2 - lAllk (5) + iAZlkéZ)(é)7 (35)
5 = Anky” (8) + Ankg? (&),
where the expressions of known functions k (&), kél)(é), e k;z)(f) and kéz)(é) are omitted. From Eq.
(34), Ay, and 4, can be solved by u ’*0 and 7 _*0 as follows:
= O8R4 a6
Ay = iw’k 7 ( )/4 +5T0k§1)(5)/4,
with
4=k OK (&) - K (R (©). (37)
Substituting Eq. (36) into Eq. (33), Eq. (33) reduces to
70 = —iw 'V (&) + 7010 (9),
wl pr (&) > (&) (38)

70 = i(—im")r (&) + im0 (9),

where the expressions of known functions ril)(é), ré”(é), rgl)(i) and rf‘l)(ﬁ) are omitted. In addition, dis-
placements ;" and 7" can be shown by

w = i) Q) + 17 (9),

(39)
5 = =i () + 710 (8),
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where the expressions of known functions 1(12)(5) 1(22>(£), 1(32)(5) and l (&) are omitted.

In order to satisfy Eq. (13), the differences (v}° — v3°) and (u}° — uzo) are represented in the following
series expansions:

(v —vy) = Zc,, cos[(2n — 1)sin ' (x/a)] for|x| <a, (40)
n=1
=0 fora < |x|,
n(u® —uy®) = > d,sin[2nsin"'(x/a)] for |x|<a, (1)
=0 for a < x|,

where ¢, and d, are unknown coefficients. The Fourier transformed expressions of Egs. (40) and (41) are

@ =15") =D cu(2n — 1)/E X Ty (al),
! (42)

o0

(=)@ —w') =Y dy(2n)/& x o (ag),

n=1
where J,(¢) is the Bessel function. The variables on the left-hand side in Eq. (42) can be modified to the next
equation by using Eq. (39). Thus,
@ = 5") = (=) [~ + 7’1 - 1),
(=)@’ =) = (=) [L = 7] + 7' [=15 (9)):

The variables on the right-hand side in Eq. (42) are identical to those in Eq. (43). Then, #;” and 7}° can be
solved by c,and d, as follows:

(43)

o0

—iu;’ = ch (2n = D)IF(&)/(EA') X J1(al) + Y d,(2n)[1 = I5(8)]/(€4') x Jn,(al),
=l (44)

00

o —ch (2n = D1 = 1)/ (EA) X Tay1(a&) + > _du(2n)1(2)/(EA) X Jns(al)

n=1

with

A== - 17 - (&)1 ). (45)

Substituting Eq. (44) into Eq. (36), 4;; and 4, can be represented by the unknown coefficients ¢, and d,,.
Then, stresses that satisfy the boundary conditions (13)—(18) in the Laplace transform domain can be
expressed by unknown coefficients ¢, and d,. For example, stresses 1*01 and % are of the form:

xyl

yyl = Zc,, 2n—1)/m x / 01(&)/& X Jp,1(Ea) cos (Ex)dé
4 Zd 2n) /7 % / 05() /€ % Jon(Ea) cos (Ex)dE,
T = ch (2n—1)/m x / 03(8) /& X Jau_y(Ea) sin (Ex)d¢E

£ dy(2n) /7 /0 04(&)/& X Jon(Ea)sin (Ex)de
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with
01(8) = {15V () + 1 = 1P &) &)}/ 4,
0:(&) = {7 (O) + [1 - (O (©)}/ 4", )
03(&) = {15 (A (&) + 1 = 1P &) e)y /4,
04(8) = {12 (&) + 11 = 1P (A" )y /4

Functions 0,(¢) and O;(¢) are identical and decrease rapidly as & increases. Functions O (&) and Q4(¢)
have the following property when & increases,

0(8/E— 0 (i=14), (48)
where constants Q- (i = 1,4) are calculated by
QiL = Qi(fL)/fLa (49)

where &; is a large value of &.
Finally, the remaining boundary condition (12) can be reduced to the equation

ic,,G,,(x) + id,,Hn(x) = —p/s,

n=1 n=1 (50)

> enKu(x) + Y “dyLy(x) =0 for x| <a,
n=1

n=1

where

G,(x) = (2n—1)/m x {/0 (&)/¢ — 081 (al) cos (Ex)déE
+ Okcos[(2n — 1)sin ' (x/a)]/(d? _x2)1/2}7

H,0) =20/ % |7 0:(0)/¢ x ufad) cos (0.
K,(x)=02n-1)/n x /00C 03(8) /& X Sy (al)sin (Ex)dE,

L,(x) = 2n/m x { /OX[QL‘(@/@ — QM (aé)sin (éx)dé 4 Qsin [2nsin~ (x/a)]/(a® _x2)‘/2}. (51)

The unknown coeflicients ¢, and d, in Eq. (50) can now be solved by applying the Schmidt method (Yau,
1967).
Using the relations

/O OOJn(aé)[cos (x), sin(éx)]dé = {—a"(x* — a®) x4+ (& — &®)*] "sin (nn), a" (x> — a*) 2

X [x+ (2 — )"} " cos (nm)}  for a<x, (52)

the stress intensity factors in the Laplace transform domain can be expressed as
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K} = lim+/2n(x — a)r;;)],

x—a+

Y e(2n—1) x (~1)'0}/(ra)'",
n=1

K; = lim \/2n(x — @)1}y,

x—a+

idn x 2n x (—=1)"Q%/(na)'"?.

In Sections 3 and 4, stress intensity factors were solved only for m = 3. However, solutions form =1, 5, 7
can also be obtained in a straightforward manner. The stress intensity factors K| and K; are calculated
numerically for m = 1, 3, 5, 7 and plotted with respect to 1/m. The stress intensity factors in the cracked
nonhomogeneous layer can be obtained only if the layer is replaced by an infinite number of sub-layers. If
the numerical results are plotted with respect to 1/m, the stress intensity factors K} and K for the interfacial
layer, the material constants of which vary continuously with respect to y, can be obtained from the values
at (1/m) — 0. This process is explained in detail in Section 5.

The inverse Laplace transformations of the stress intensity factors are carried out by the numerical
method described by Miller and Guy (1966). When the Laplace transform g*(s) can be evaluated at discrete
points given by

s=(B+1+k), k=01,2,..., (54)

we determine coefficients C,, from the following set of equations:

k
5 x g'[(k+ B+ 1)0] = Cokl/[(k+ B+ 1)(k+B+2)- (k+ B+ 1+m)k—m)], (55)
m=0
where 0 > 0 and § > — 1. If the coefficients are calculated up to Cy_;, an approximate value of g(¢) can be
found as

N-1
g(t) =Y CuPYP2exp(d1) — 1], (56)
m=0
where P\*P)(z) is a Jacobi polynomial. The parameters é and § must be selected such that g(7) can best be
described within a particular range of time ¢.
We have the relation between g*(s) and g(7) as

lim|sg(s)] = limg(s). (57)

Therefore, the static results of the stress intensity factors in physical space can be obtained using Eq. (57).

5. Numerical examples

The transient dynamic stress intensity factors are calculated numerically for ceramic—steel composites
and plastic-aluminum composites, the material constants of which are shown in Table 1. In the interfacial
layer (A4), the material constants are assumed to vary linearly with respect to y. In addition, the crack is
assumed to be situated on the middle surface of the layer. Namely, the H-/Hp ratio is fixed as 1.0. The
nonhomogeneous layer is divided into equal sub-layers. If m=3, then hy = hy = (Hz + Hc)/3, h) =
hy = (Hp + Hc)/6. The accuracy of the numerical calculations are excellent. In order to demonstrate the
accuracy of the numerical calculations, calculation process is explained for the worst case: plastic-alumi-
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Table 1

Material constants
Constants Ceramic Steel Plastic Aluminum
u(GPa) 119.7 79.2 0.889 26.9
v 0.27 0.3 0.35 0.34
p(10° kg/m3) 3.15 7.7 1.25 2.7

Table 2

Qi(&a)/(&a) for plastic-aluminum composites®
(Sa) 01(¢a)/(a) O>(¢a)/(Ea) 04(8a)/(Sa)
300.01 —-0.1052743 0.0029064 —-0.1057867
300.21 —-0.1052759 0.0029018 —-0.1057870
599.81 —-0.1060325 0.0001564 —0.1060446
600.01 —0.1060326 0.0001560 —0.1060446

4[Hg/a(= Hc/a) = 0.05, (sa/c1) = 0.2 and m = 7.]

Table 3
Values for the left-hand side of Eq. (50) for plastic-aluminum composites®
x/a SlileiGilx/a) + dH,(x/a)l/p/ (sa/cwr)] Stk (x/a) + d,Li(x/a)]/[p/ (sa/c1)]
0.00000 —0.999847 0.000000
0.04167 —0.999917 —0.000026
0.50000 —0.999942 —-0.000031
0.95833 —1.000009 0.000023
0.99900 —0.999997 0.000007

*[Hp/a(= Hc/a) = 0.05, (sa/c,1) =02 and m=17.]

num composites for Hp/a(= Hc/a) = 0.05. First, the values of Q;(¢a)/(¢a) are denoted for m =7,
(sa/cr) = 0.2 in Table 2. The table shows that the numerical integrations can be carried out satisfactorily
using Filon’s method. In Table 3, the values for the left-hand side of Eq. (50) are shown for m =7,
(sa/cry) = 0.2. The table shows that the boundary conditions inside the crack are satisfied with good ac-
curacy.

The stress intensity factors K; for the plastic-aluminum composites are calculated for
Hg/a(= Hc/a) = 0.05, (sa/cr;) = 0.2 and are then plotted with respect to (1/m) in Fig. 5. As the number of
sub-layers, m, approaches infinity, K| rapidly approaches a correct value for a nonhomogeneous interfacial
layer. Then, using the values for (1/m)=1/3, 1/5 and 1/7 from Fig. 5, we approximate K| using the following
equation:

K =a(1/m)* +ax(1/m)* + a3, (58)

where constants a;, a, and a; can be easily determined. The curve in Fig. 5 is a plot of Eq. (58). It is
considered that the value of dK|/d(1/m), which is the first-order derivative of K} with respect to (1/m),
should be zero as the m approaches infinity. Thereby, K| can be approximated by Eq. (58). The correct
value of K| for a cracked nonhomogeneous layer is given by a3 in Eq. (58).

In general, if the value in physical space varies mildly with time, the numerical Laplace inversion can be
performed easily as described in a previous paper (Itou, 1983). The present Laplace inversions are just such
a case. The stress intensity factors K and K are inverted by setting (f = 0.0,0 = 0.2, N = 13) in Eq. (55).
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Fig. 5. Curve of K; expressed by a;(1/m)’ +ay(1/m)’ +a; for plastic-aluminum composites for [Hy/a(= Hc/a) = 0.05,
(sa/cp) =0.2].

In Figs. 6 and 7, stress intensity factors K; and K, for the ceramic—steel composites are plotted with
respect to ¢;1¢/a, and Figs. 8 and 9 show these values for the plastic-aluminum composites. The corre-
sponding static values calculated using Eq. (57) are represented by straight lines in these figures.

Here, the method to calculate the static value is explained. The value K;/(py/ma) for the plastic-alu-
minum composites is evaluated for Hz/a(= Hc/a) = 0.05. For this case, K| x (sa/c1)/(py/Ta) are com-
puted numerically for (sa/cz;) = 0.01, 0.02, 0.03 and 0.04. Using those four values, K| x (sa/cr1)/(pv/7a)

can be approximated by the form:

K; % (sa/ep)/(py/ma) = bi(sajc)’ + ba(safe)” + bs(sajcyy) + ba, (59)
where constants by, b,, b3 and b4 can be easily determined. The curve given by Eq. (59) is drawn in Fig. 10.

The static value of the stress intensity factor K, /(py/ma) is provided by the value of b4, which is the value of
K; x (sa/cp1)/(py/ma) for (sa/cp) = 0. From the figure, it is clear that the value of K x (sa/cp1)/(pv/na)

1.5

e

K,/ (pyma)

Hy/a=
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Fig. 6. Stress intensity factor K, for ceramic-steel composites plotted with respect to ¢, ¢/a.
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Fig. 7. Stress intensity factor K, for ceramic—steel composites plotted with respect to ¢;¢/a.
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Fig. 8. Stress intensity factor K, for plastic-aluminum composites plotted with respect to c;,¢/a.

approaches a fixed value as the value of (sa/c;;) approaches zero. Therefore, it is considered that the static
values of the stress intensity factors can be calculated precisely.

The peak values of the dynamic stress intensity factors K™** and K2*** are divided by the corresponding
static values K and K5, respectively, and are denoted in Tables 4 and 5.

6. Conclusions

Based on the numerical calculations outlined above, the following conclusions are reached:

(1) For the ceramic—steel composites, the stress intensity factors K; and K, are not comparatively affected
by the thickness of the interfacial layer. The curves of K| and K, for a very thin layer can be approximated
by those for Hz/a = 0.1.

(2) For the plastic-aluminum composites, the peak values of K| and K, are increased as the Hp/a ratio
decreases. The curve of K for a very thin layer can be approximated by that for Hz/a = 0.05. In addition,
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Fig. 9. Stress intensity factor K, for plastic-aluminum composites plotted with respect to ¢;,t/a.
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Fig. 10. Curve of K} x (sa/c.1)/(pv/ma) expressed by by(sa/ciy)’ + by(sa/cpy)” + bs(sa/cyy ) + by for plastic-aluminum composites for
Hy/a(= H¢/a) = 0.05.

Table 4
KPk /Kstatie vatio for Hy/a = He/a
Hg/a Ceramic-steel composites Plastic-aluminum composites
1.0 1.233 1.370
0.5 1.207 1.360
0.2 1.194 1.317
0.1 1.194 1.311
0.05 1.290

as the thickness of the interfacial layer approaches zero, K, falls on a curve that is similar to that for
Hg/a = 0.05.
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Table 5
KP* /K5 ratio for Hg/a = He/a
Hg/a Ceramic-steel composites Plastic-aluminum composites
1.0 2.668 1.467
0.5 2.658 1.460
0.2 2.542 1.380
0.1 2.288 1.372
0.05 1.352

(3) Both ratios KP*** /Kstate and KP** /K3tic decrease as the Hy/a ratio decreases for both the ceramic—
steel composites and the plastic-aluminum composites.

(4) Peak values of K| for the ceramic—steel composites decrease slightly as the Hp/a ratio decreases.
However, for the plastic-aluminum composites, the peak values increase as the Hy/a ratio decreases.

(5) Oscillatory stress singularities appear around an interface crack between two dissimilar elastic ma-
terials when the stresses are solved through the Hilbert problem. If two dissimilar elastic half-planes are
joined by the interfacial layer, in which the material constants vary continuously, such improper behaviors
do not exist unless the thickness is zero and the conventional dynamic stress intensity factors can be defined
regardless of the thickness of the interfacial layer.
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